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MANY workers have investigated heat transfer from gas to 
particles in a fluidized bed and the best survey of this field 
is by Frantz [l]. The experimental technique of some 
investigators or their interpretation of data can be 
questioned but there is a residual core of results that 
indicate Nusselt numbers less than 2. Starting from this 
point, Dr. Zabrodsky argues that in a bed of particles 
the minimum Nusselt number should be appreciably 
greater than 2 but he goes on to show that, in spite of 
this, apparent values can approach zero if one assumes 
certain hydrodynamic conditions within the bed. In this 
note it is shown first that Dr. Zabrodsky’s argument 
about minimum Nusselt numbers can be extended and 
generalized but does not accord with experimental facts 
and second, that the hydrodynamic conditions within a 
gas fluidized bed are different from those assumed and 
are not so amenable to generalized calculation as has 
been supposed. 

If a hot sphere of diameter d is surrounded by a con- 
centric spherical shell of diameter d1 which acts as a heat 
sink and the intervening spherical annulus is filled with 
stagnant fluid, Zabrodsky shows that the Nusselt number 
is 2/(1 - d/da. It takes its familiar limiting value of 2 
therefore only when the concentric sink is infinitely 
distant. In a bed of packed uniform spheres, the inter- 
vening fluid can be imagined to be re-disposed as spherical 

shells around each particle and in this way a value can 
be ascribed to d1 in order to estimate a limiting Nusselt 
number, that is to say, the Nusselt number with stagnant 
fluid (Re = 0). Zabrodsky writes the volume of this 
equivalent spherical shell as ?rd% which should really be 
(?r/6)[(d + 26)* - da] and for the case of cubic packing 
this leads to Nu,t, = 10.3 instead of the value 8.6 
given in the paper. The value is, of course, different again 
if one considers any other packing geometry. Morris f2] 
has made an identical analysis for the case of mass 
transfer and the limiting Sherwood number. 

Consider any arrangement of equal sized spheres dis- 
persed more or less uniformly in a fluid and let the poros- 
ity or voidage be Q. The amount of fluid per sphere will 
be (nd*/6)[&1 - E)] and, following Zabrodsky’s method, 
this can be expressed as an equivalent spherical shell of 
fluid so that, 

(nd3/6)[</(l - c)] = (+6)[(d + 21)s - d3] 

26 = [($-j’ - l] d (1) 

and the minimum Nusselt number becomes, 

A&i, = 2/[1 - (1 - &I. (2) 
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The expression is plotted in Fig. 1 and it is seen that 
Nu,i, can apparently be as high as 21 for close packed 
spheres. 

Also in Fig. 1 are shown experimental data for : in 
diameter spheres arranged in a rhombohedrat lattice. 
In the experiment, the spacing between spheres could be 
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FIG. 1. Minimum Nusselt number for uniform 
spheres in different packings. 

changed in order to vary the porosity of the whole 
assembly whilst preserving the geometry. The apparatus 
was as previously used for drag measurements [3,4] and 
heat-transfer coefficients were measured by heating a 
single copper sphere at a known rate and recording the 
surface and water temperatures [S]. Minimum NusseIt 
numbers were obtained by extrapolating to zero heat 
flux and zero fluid velocity. Similar results have since 
been obtained with the same and with larger spheres in 
air. The minimum Nusselt number with spheres touching 
in rhombohedral packing is little more than 3, an order 
of magnitude less than predicted. Simharly, Mullin and 
Treleaven [6] show increases of Sherwood number at 
low Reynolds numbers of about two- or three-fold be- 
tween closely packed and isolated spheres. The minimum 
Sherwood number seems to be perhaps twice the 
corresponding Nusselt number and as yet there is no 
explanation of this. 

This very wide discrepancy between theory and 
apparently unambiguous experimental results suggests 
an incorrect assumption and this is most probably the 
supposition of radial symmetry. Plainly no assembly of 

spheres of finite size can be spherically symmetrical about 
a point and therefore the heat flow from any given sphere 
carmot he radially uniform. This is particularly so when 
spheres are close together. To illustrate the importance of 
this geometrical assumption, consider radial heat flow 
from an infinitely long cylinder. The expression for the 
limiting Nusselt number corresponding to Zabrodsky‘s 
equation (2) is 2/lag, @r/d) which becomes zero with 
infinitely distant boundaries. That is to say a steady finite 
heat flow is impossible with a finite temperature differ- 
ence. The Nusselt number relationship corresponding to 
equation (2) above is, 

Numilr (cylinder) = 4jlog, [l/(1 --- c)] (3:) 

which gives values appreciably less than for spheres with 
the same porosity. Rigorous analysis of heat flow in an 
assembly of spheres would be enormously complex but 
there is no reason to suppose that the limiting Nusselt 
number will not be less than 2. 

Consider now Zabrodsky’s treatment of particles in ;1 
Cluidized bed. The heat-transfer coefficient is taken from 
Wadsworth’s data ([12] in the paper) which applies to 
Reynolds number of order IO* but this is combined with 
Leva’s hydrodynamic equation that Zabrodsky has 
extrapolated to apply up to Re = 200. (Leva himself sets 
an upper limit of Re = 5 and even so, the scatter range 
of data is a factor of 2.) Flow in Wadsworth’s case is 
plainly turbulent whilst Leva’s expression refers to 
streamline flow and their ~mbination is thus invalid. 
Equation (9) in the paper and all that follows from it 
cannot therefore be accepted. 

The theory of “micro breaks” might conceivably apply 
to a turbulent liquid fluidized bed but it is not relevant 
to the highly ordered pattern of gas and solids flow that 
occurs in a normal bubbling gas huidized bed 17, 8, 91. 
The idea of unstable particle aggregates that disappear 
and re-form presupposes random motion within the bed 
whereas, although the appearance and duration of 
bubbles may be partly random, solids and gas motion are 
uniquely determined by the bubbles. 

Since the history of contacting between gas and 
particles can be predicted, it follows that the overall heat- 
transfer rate can be estimated once the reiationship 
between Nusselt number and local Reynolds number is 
known. It is first necessary to calculate the rate of 
bubbling in the fluidized bed for this determines the rate 
of particle mixing, and therefore the relative positions 
of particles with respect to hot gas entering the bed. The 
next step is to calculate how gas will flow through the 
bed. For example, with particles less than about 0.3 mm 
diameter, the bubble velocity is greater than the inter- 
stitial gas velocity and a gas cloud develops around the 
bubble. Gas that passes through the bed in this way has a 
low residence time and is only partly in contact with 
particles in a shell around the bubble so that heat transfer 
may be restricted. Interstitial gas on the other hand will 
be in continuous contact with particles and roughly 
speaking, it will cool with bed height according to an 
exponential decay law. In this way the overall heat-transfer 
rate can be calculated once the hydrodynamic situation 
is known. 



SHORTER COMMUNICATIONS 991 

The overall Nusselt number is invariably low and often 
orders of magnitude less than 2. The reason for this is 
that the maximum driving force is not available to all the 
particles. Alternatively, not all the particle surface area 
is exposed to hot gas. This, of course, is the theme under- 
lying Zabrodsky’s treatment. Since the heat capacity 
of gas is small compared with that of solids and fluidiz- 
able particles have a huge surface area per unit volume, 
heat-transfer rates are always high wherever there is a 
modest temperature difference so that the calculated 
overall heat-transfer rate is not particularly sensitive to the 
hydrodynamic model that is chosen. However, this is not 
the case when mass transfer is considered, for then the 
rates may be low for chemical reasons and the calculation 
becomes critically dependent upon the assumptions made 
about the details of gas solids contacting. (The 
symbols d, 6 and I\rumin. are as defined in Zabrodsky’s 
paper.) 
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Note: Zabrodsky’s reference [12] should read WADS- 
WORTH. 
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IN THE present issue of this Journal is published a 
comment by Dr. P. N. Rowe [l] on the present writer’s 
previous paper 121. This wmment is undoubtedly useful 
to the author since it allows him to elucidate his concep- 
tions while discussing Dr. Rowe’s contribution. 

The main aim of [2] was to show the principal physical 
grounds for the very small apparent values of the Nusselt 
number, namely the actual temperature driving forces 
caused by micro-non-uniformity of fluid distribution in 
a bed. For this purpose the author used a model and 
correlations which were rather approximate but easy to 
understand. Naturally, the well-known radial asymmetry 
of the gas “shell” around a solid particle in a bed was 
not considered at this first step. However, some of Dr. 
Rowe’s remarks show that he is wrong in thinking that 
the formulae in 121 were suggested as final ones for design 

calculations. Dr. Rowe, for example, writes about the 
inaccuracy of Nusselt number estimation for the cubical 
packing. On the contrary, it would be batter to say that 
since this model is an approximate one, it should be used 
to determine rough values of Nusselt numbers but not 
accurate to one decimal place. 

Dr. Rowe unfo~unately trusts without any reasons or 
physical grounds that such true film-heat-transfer co- 
efficients are possible in the system of solid particles 
which correspond to Nusselt numbers far below two. 
Comparison of the approximate true Nusselt numbers 
estimated by the present author’s model with the Nusselt 
numbers obtained from Dr. ‘P. N. Rowe’s experiments 
(Fig. 1 of [l]), provides no evidence of such possibility 
but makes a good proof that Dr. Rowe’s methods are 
not valid in their essence for determining true heat- 


